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Today

e Convex optimization

e Machine learning

— four perspectives: statistics, computer science, numerical algorithms, hardware

® Deep learning
— CNN & RNN

e Al Applications
— image classification, self-driving cars, security, loT, bio-medical
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Prerequisite for the talk

This talk will assume the audience

e has been exposed to basic linear algebra

e can distinguish componentwise inequality from that for positive semidefiniteness, i.e.,

T
Ax < b & : r < E @a?wﬁbiforizl,...,m,
afl b,

but,
A=0< A=A" and 2" Az > 0 forall z € R"

A=0& A= Al and 2' Ax > 0 for all nonzero x € R"
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Why convex optimization?

e many machine learning algorithms (inherently) depend on convex optimization
e one of few optization class that can be actually solved

e a number of engineering and scientific problems can be cast into convex optimization
problems

e many more can be approximated to convex optimization
e convex optimization sheds lights on intrinsic property and structure of many

optimization, hence, machine learning algorithms
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Mathematical optimization

e mathematical optimization problem:

minimize  fo(x)
subject to  fi(x) <0, i =1,...

|
[ —

T . L .
—z=| x z, | € R" is the (vector) optimization variable

— fo : R™ — R is the objective function

— fi; : R™ — R are the inequality constraint functions

— h; : R" — R are the equality constraint functions

Convex Optimization for Machine Learning
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Optimization examples

® circuit optimization

— optimization variables: transistor widths, resistances, capacitances, inductances
— objective: operating speed (or equivalently, maximum delay)

— constraints: area, power consumption
e portfolio optimization

— optimization variables: amounts invested in different assets

— objective: expected return

— constraints: budget, overall risk, return variance

Convex Optimization for Machine Learning
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Optimization examples

e machine learning

— optimization variables: model parameters (e.g., connection weights)
— objective: squared error (or loss function)
— constraints: network architecture

Input Hidden Hidden
layer layer 1 layer 2

.H p(class=11x)
. » p(class=21x)

Convex Optimization for Machine Learning
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Solution methods

e for general optimization problems

— extremly difficult to solve (practically impossible to solve)

— most methods try to find (good) suboptimal solutions, e.g., using heuristics
® some exceptions

— least-squares (LS)

— liner programming (LP)

— semidefinite programming (SDP)

Convex Optimization for Machine Learning
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Least-squares (LS)

e least-squares (LS) problem:

minimize ||Axz — b||§ = Z;Zl(afﬂﬁ — 51)2

— analytic solution: any solution satisfying (A% A)z* = A™b
— extremely reliable and efficient algorithms
— has been there at least since Gauss

e applications

— LS problems are easy to recognize

— has huge number of applications, e.g., line fitting

Convex Optimization for Machine Learning
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Linear programming (LP)

e linear program (LP):

minimize clx

subjectto Ax <X b

— no analytic solution
— reliable and efficient algorithms exist, e.g., simplex method, interiorpoint method
— has been there at least since Fourier

— systematical algorithm existed since World War I
e applications

— less obvious to recognize (than LS)

— lots of problems can be cast into LP, e.g., network flow problem

Convex Optimization for Machine Learning
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Semidefinite programming (SDP)

e semidefinite program (SDP):

minimize clx
subjectto Fo+x1F1+---+x,F,, =0

— no analytic solution

— but, reliable and efficient algorithms exist, e.g., interior-point method
— recent technology

e applications

— never easy to recognize
— lots of problems, e.g., optimal control theory, can be cast into SDP

— extremely non-obvious, but convex, hence global optimality easily achieved!
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Max-det problem (extension of SDP)

® max-det program:

minimize c'x + logdet(Fy + x1F1 + - - - + x, F})
subjectto Go+ x1G1+ -+ x,G, = 0

— no analytic solution
— but, reliable and efficient algorithms exist, e.g., interior-point method
— recent technology

e applications

— never easy to recognize

— lots of stochastic optimization problems, e.g., every covariance matrix is positive
semidefinite

— again convex, hence global optimality (relatively) easily achieved!
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Common features in these Exceptions?

e they are convex optimization problems!

® convex optimization:
minimize  fo(x)

subject to  fi(z) <k, 0, i =1,...,m
Ax = b

where
— fo(Az + (1= AN)y) < Afo(z) + (1 —A)fo(y) forallz,y € R"and 0 < A <1
- fi:R" — R¥i are K;-convex w.r.t. proper cone K; C RFi

— all equality constraints are linear

Convex Optimization for Machine Learning 18
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Convex optimization

e algorithms

— classical algorithms like simplex method still work well for many LPs

— many state-of-the-art algorithms develoled for (even) large-scale convex optimization
problems

* barrier methods

* primal-dual interior-point methods

e applications

— huge number of engineering and scientific problems are (or can be cast into) convex
optimization problems

— convex relaxation

Convex Optimization for Machine Learning 19
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What's fuss about convex optimization?

e which one of these problems are easier to solve?

— (generalized) geometric program with n = 3,000 variables and m = 1,000
constraints

. PO 80,i,1 B0.i,n
minimize 21 0Ty R 2
: Pj Pji1 Bjin .
subject to > .7, a7 R <1l,757=1,...,m

with Qg > 0 and Bj,z',k €R
— minimization of 10th order polynomial of n = 20 variables with no constraint
L 10 10 i1 :
minimize > ;g D1 Cipin®y T

with Ciq,...rin €R
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e which one of these problems are easier to solve?

— (generalized) geometric program with n = 3,000 variables and m

= 1,000
constraints

C o Bo.i.1 Bo.i
minimize > 0 qpxy Xy
. D Bii1 Bii )
subject to > .7 iyt o x,) < 1, G =1,.00.,m
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What's fuss about convex optimization?

e which one of these problems are easier to solve?

— (generalized) geometric program with n = 3,000 variables and m = 1,000
constraints

. PO 80,i,1 B0.i,n
minimize 21 0Ty R 2
: Pj Pji1 Bjin .
subject to > .7, a7 R <1l,757=1,...,m

with Qg > 0 and Bj,z',k: €R
=> can be solved within 1 minute globally in your laptop computer
— minimization of 10th order polynomial of n = 20 variables with no constraint

C . 10 10 ‘ G in
minimize Zil:l Tt Zinzl Ciq,...,inLy1 "Ly

with Ciq,...rin €R
= you cannot solve!
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What is machine learning?

e machine learning

— is the subfield of computer science that “gives computers the ability to learn without
being explicitly programmed.” (Arthur Samuel, 1959)
— learns from data and predicts on data

e applications
— spam fitering, search engine
— detection of network intruders (or malicious insiders)
— computer vision, speach recognition, natural language processing

Convex Optimization for Machine Learning 23
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ML example: regression

e problem: what is a reasonable price for a
house?

— what would a rational (or rather normal)
human being do?

— ML approach:
x collect data: x: size, y: price
x train model: draw a line to represent
(typical) trend
x predict a price from the line

Convex Optimization for Machine Learning
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ML example: multi-variate regression

e what if we have more than one x? or rather
more than two x's?

e what if highly nonlinera and nonconvex fitting
function is needed?

Convex Optimization for Machine Learning
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Mathematical formulation for (supervised) ML

e given training set, {(az(l), y(l)), ey (x(m), y(m))}, where (" € R? and ¢y € R?
e want to find function gy : R® — RY with learning parameter, 8 € R"

— go(x) desired to be as close as possible to y for future (z,y) € R’ X R

— e, go(x) ~y
e define a loss function I : R x R? — R

e solve the optimization problem:

minimize  f(0) = % S l(gg(:c(i)), y(i))
subjectto 6 € ©

Convex Optimization for Machine Learning 26
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Gifts |

e genetic algorithm learning how to swing

e multi-class classification using deep learning

Convex Optimization for Machine Learning
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Linear regression

e (simple) linear regression is a ML method when

— qg = 1, i.e., the output is scalar

1

—ge(x)ZQT[ . } = 0o+ O1x1 + - - + Opxp, de, n =p+1

— | : R X R — Ry is defined by I(y1,y2) = (y1 — y2)2

1 . ..
— © = RP™ j.e., parameter domain is all the real numbers

e formulation

1 2

minimize  f(0) = L >, <9T [ (¥ ] N y(i)>

Convex Optimization for Machine Learning
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Solution method for linear regression

e linear regression is nothing but LS since

) 1 L0 ey

= T 1 (i) . . .
i=1 (m)

2
— HX@ - y||2

mf(6)

e convex in 6, hence obtains its global optimality when the gradient vanishes, i.e.,
mVF0) =2X" (X0 —y) =2((X"X)0 — X"y) =0

e analytic solution exists and in practice,
— QR decomposition or single value decomposition (SVD) can be used

Convex Optimization for Machine Learning 29
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Multiple output linear regression

e multiple output linear regression is a ML method when

AT 1 010+ 01121+ -+ -+ 01,7
- go(x) =0 [ } = :

xr

9q,0 + eq,lxl + -+ Qq,pajp
— 1 : R? x R? — Ry is defined by I(y1, y2) = |ly1 — v2l/5
— © = RPTUXq ;¢ parameter domain is all the real numbers

e formulation

2

minimize  f(0) = L >,

1 1
QT[ CC(q;) :| _y()

2
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S. Yun

Solution method for multiple output linear regression

e linear regression is nothing but LS since

@) = Yo" | o |-
1=1
(1 g 1
) 1 a;“j’b)T 1
= |IX0 —yll;

where X € R™*4(PtD) 354 g ¢ R2(PHD)

e hence, the same method applies

Convex Optimization for Machine Learning
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Linear regression with constraints
e what if we have one constraint?

minimize  f(0) = L >, (9T [ xt) } _ y(z')>

subjectto 61 > 0

Convex Optimization for Machine Learning

32



S. Yun

Linear regression with constraints

e what if we have one constraint?

minimize  f£(0) = L 32", <0T [ xt) } _ yu))

subjectto 61 > 0

e no analytic solution exists (with only one constraint) in general

Convex Optimization for Machine Learning
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Linear regression with constraints

e what if we have one constraint?

1 2

e 0) =52 (07 4] <)

subjectto 61 > 0

e no analytic solution exists (with only one constraint) in general

e however, convex optimization algorithms solve it (almost) as easily as original problem
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Linear regression with constraints

e what if we have one constraint?

2
minimize  f(0) = L >, (QT [ xt) } _ y(i))

subjectto 61 > 0

e no analytic solution exists (with only one constraint) in general
e however, convex optimization algorithms solve it (almost) as easily as original problem

e but, now with any number of convex constraints

minimize  f(0) = L 37, (9T [ L } _ ym)
XT
subject to  ¢;(0) < Ofori=1,...,1
A =0b

Convex Optimization for Machine Learning 35
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Support vector machine

e problem definition:
— given z'¥ € R?: input data, and ¥V € {—1,1}: output labels
— find hyperplane which separates two different classes as distinctively as possible (in
some measure)

e (typical) formulation:

minimize  ||a|l3 + v Do, w
subject to y(i)(aTa:(i) +b0)>1—wu, t=1,...,m
u >0

— convex optimization problem, hence stable and efficient algorithms exist even for
very large problems

— has worked extremely well in practice (until... deep learning boom)
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Support vector machine with kernels

e use feature transformation ¢ : R” — R? (with ¢ > p)

e formulation:

minimize  ||a||3 + v > oim, G

subject to  yW(aTp(z ) +b)>1—a;, i=1,...

& > 0

e still convex optimization problem

e o
¢
° /o0 .
oo o
) e o
Input Space Feature Space

Convex Optimization for Machine Learning
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Different perspectives on machine learning

e statistical view: Frequentist or Bayesian?

e computer scientific perspective

e numerical algorithmic perspective

e performance acceleration using hardward parallelism with GPGPUs

Convex Optimization for Machine Learning
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Statistical perspective

e suppose data set X,, = {zV), ..., 2™}

— drawn independently from (true, but unknown) data generating distribution pgata ()

e Maximum Likelihood Estimation (MLE) is to solve

maximize Pqata(X;0) = 1_[111 pdata(w(i); 0)

e equivalent, but numerically friendly formulation:

maximize 10g paata(X;0) = >, log pdata(w(i); 0)

Convex Optimization for Machine Learning

39



S. Yun

Equivalence of MLE to KL divergence

e in information theory, Kullback-Leibler (KL) divergence defines distance between two
probability distributions, p and g:

Dxw(pllq) = /_Oo p(x) log%d:ﬁ

e KL divergence between data distribution, pqata, and model distribution, pmodel, can be
approximated by Monte Carlo method as

1« i i
DKL(pdata”pmodel) =~ E Z(log pdata(x( )) - log pmodel<$( ); 9))
i=1
e hence, minimizing the KL divergence is equivalent to maximizing the log-likelihood!

Convex Optimization for Machine Learning 40
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Equivalence of MLE to MSE

e assume the model is Gaussian, i.e., y ~ N (go(x), X):

i), (d 1 1 i DI i i
p(y" 215 0) = 2 s P (—5 (y() — go(a' ))> »7! (y() — go(a' )))>

e assuming that X = I, the log-likelihood becomes

m

— i)y, (q g i pm
> _logp(y™ 2" 0) = = > Iy — go(a™)13/2 — =~ log(2m)
1=1 1=1

e hence, maximizing log-likelihood is equivalent to minimizing mean-square-error (MSE)!

Convex Optimization for Machine Learning 41
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Other statistical factors

e overfitting problems

e training and test

® cross-validation

e regularization

e drop-out

Convex Optimization for Machine Learning
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Computer scientific perspectives

e neural network architectures

e hyper parameter optimization

e double/single precision representation

e low-power machine learning (especially for inference)

Convex Optimization for Machine Learning

43



S. Yun

Numerical algorithmic perspectives

e basic formulation:
minimize  £(0) = = "7 1(ge(x'?), y)
e formulation with regularization:
minimize  £(0) = 5" 1(ga(x'?), V) + yr(0)
e stochastic gradient descent (SGD):

ot — 9% _ o, v £(6)

Convex Optimization for Machine Learning

44



S. Yun

Backpropagation for training neural network?

e assuming that

— the dimension of the feature space (or input space) is p

— the dimension of the output space is q

— aloss function [ : R? Xx R” — R,

— a neural network has d layers or it is of depth d

— 21"t € R™ is the input to the perceptrons in the ith layer
- y{i} € R™ is the output of the perceptrons in the ith layer

— Wit € R™*"i-1 is the weights of the connections between i — 1th layer and ith
layer

— wl € R™*X™i-1 is the bias weights for the ith layer
— ¢t . R™ — R™ represents the activation functions of the ith layer.
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Basic unit comprising a general neural network

_ weights
Inputs
Xj
activation
functon
X net input
- net.
D K A
X3 @ activation
transfer
: function
X fﬂ
" threshold
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Activation function

F() !
. xr s
—erf (M) —
| T T e 1 /
— tanh (¥}  — r—ir-:u'n:t.m{%;n]
2pd(Fr)  — ﬁ 0.5+
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Backpropagation for training neural network?

e modeling function for the (deep) neural network gg : R? — R? defined by
go = ¢{d} o w{d} 0---0 qb{l} o ¢{1}

or equivalently
go(z) = o'V (oM (1 (@)))))
forall x € R?

e affine transmation 1" : R™—-1 — R™ defined by

B (T = ity -1 )0
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Recall the chain rule from college calculus class

e if we have two functions f : R” — R"" and g : R"™ — RP, and the Jacobian matrices
of f and g are Dy : R — R™*" and D, : R™ — RP*™ respectively, then the
Jacobian matrix of D}, : R" — RP*™ of the composite function h = g o f is

Dy(z) = Dy(f(x))Dy(z) € R™"

e hence, if p = 1, we have

Vh(z) = Dy(z) Vg(f(x)) € R"

Convex Optimization for Machine Learning 49
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Following math logics gives back propagation formulal!

e assume that the cost function of the deep neural network is
I 5 ONING
f(0) = o > " 1(ga(z), 4.
i=1

® hence, the gradient is

mVF(0) =D Vol(ge(z”),y") = > Vol(ge(z”), y")
1=1 1=1

= Y Dogo(z")'V,,1(gs (=), y")
=1

Convex Optimization for Machine Learning
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n T
d d— ) ) 7
> (D G0 ) - Doy GTYD (7)) V4, ge( ), )
1=1

NI 14\ T d— T d 7 1
> D,y @)D,y (2" D TN TD (1), 1 (g0 (), 4 )

1=1

(having assumed that I(y1, y2) = |ly1 — v2||5)

o

(o

Vollgo(=),y") =2 | 2 T 1 erY,
yéd}_yéz)

1— iy T n; n;
D (s = Wi e R,
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et (=)

i 0
Dy (1) =
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Acceleration using hardware parallelism

e general-purpose computing on GPU (GPGPU)

— maximizes parallelism for scientific computing

— can fully utilize GPU-CPU framwork

— is efficient for matrix multiplication, LU factorization, etc.
® history

— becomes popular after 2001
— two major APIls: OpenGL and DirectX
— CUDA allowing users to ignore underlying graphical concepts

— newer: Microsoft's DirectComputer, Apple/Khronos Group’s OpenCL

Convex Optimization for Machine Learning
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Gifts 1l

e Google DeepMind’'s deep Q-learning to play a computer game

e Nvidia's self-driving technology demo @ CES 2017

Convex Optimization for Machine Learning
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What is deep learning (DL)?

e DL can be defined by

— deep artificial neural network
e DL can be characterized by

— many layers of processing for feature extraction and transformation
— learning of multiple levels of features or representations of the data
— learning representations of data

— multiple levels corresponding to different levels of abstraction

e two interpretations

— universal approximation theorem interpretation

— probabilistic interpretation

Convex Optimization for Machine Learning
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Recent advances in deep learning

e upheaval in pattern recognition due to deep learning (H. Choi)

FaceNet
4 ; | (99.63%)
9 i N H
0% | 3 __--! video (face) '
i Vi-like Feature R~ ————— !
85% ! . Sparse Coding | __mmmmmmmm————
. B;" “==71 speech(phone) i
i zmann J 7 Bl cmmmccmm e —m———
B0 [reeeerrermrmssnmnisnnnninnsisis st uM?"""e ................... pa T
SUMMIT/ | MLP 1 CNN A TNemm———————
HMM ’ ‘ | objects !
75% Kernel Regr e ———— 4
i ession
Multi-resolution Fisher Vector
70% : r
Facial Landmark De Histogram
o HMM Fisherface tection
65% Linear & Nonlinear C
oding
60%
Eigenface Kernel Discrimiham
55% Analysis |

v

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

cloud . Dee
SVM computing Big data Learm%g
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Convolutional neural network (CNN)

e CNN (or ConvNet) is

— a type of feed-forward artificial neural network
— inspired by animal visual cortex

e individual cortical neurons respond to restricted region of space

e applications in image and video recognition, recommender systems, and natural language
processing

input image feature maps feature maps feature maps feature maps tout
(256x256) (256x256) (128x128)  (128x128) (64x64 outpu

T
1
convolution subsampling convolution subsampling fully
| layer | layer | layer I layer | connected |
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Recurrent neural network (RNN)

e RNN
— is a class of artificial neural network where connections between units form a directed
cycle
— creates an internal state of the network which allows it to exhibit dynamic temporal
behavior

e applicable to handwriting recognition or speech recognition
— neural history compressor, long short-term memory

Hidden "
Input layer

Context
layer
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Special consideration: how to learn a deep neural net from rules

e create generative model: use rules to generate {(z™, y™M), ..., (2™, y(™)}

— want to find function gy : RP — R with learning parameter, 8§ € R", but this
time, we want to use it for another purpose

— define a loss function [ : R? x R? — R for the purpose

e now do the usual, i.e., learn a deep neural net using the set as training set
e how is this different from the rule-based approach?

— what are the advantages?
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Al Applications

e big data: medical, bio, finance

e auto industry: self-driving (or assisted driving) algorithm

e |oT: smart machines, smart algorithms

® securities

Convex Optimization for Machine Learning
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Image classification

e today’s largest network

— 10 layers, 1B parameters, 10M images

— 30 exa flops

e human brain has trillions of parameters - only 1, 000 times more

Convex Optimization for Machine Learning
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Machine learning and security

e Is ML pipe dream of cybersecurity?

— "“there’s no silver bullet in security.”

e Is ML answer to detecting advanced breaches?
— it will shine as IT envinronments “grow increasingly complex.”

e Will Al replace cybersecurity experts?

Convex Optimization for Machine Learning
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Machine learning and loT

e loT market will grow to > $1.7 trillion by 2020 with CAGR of 16.9%

— purpose-built platforms, storage, networking, security

— application software and service offerings
e # loT connected devices (cars, refrigerators, . .. ) will climb to 30 billion

e c.g., General Electric, Philips, Ford Motor, Rio Tinto Group, and Stanley Black &
Decker being a few of the companies with huge support from

— companies like Dell, Hewlett Packard Enterprise, IBM, AT&T, Verizon
Communications, Intel, ARM

— small/startup companies than can be counted

(source: Forbes article)
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Machine learning and medical applications

e demand: people increasingly interested in longer and healthier life

e technology

— data from huge number of patients needed

— size of DNA sequence huge!

Convex Optimization for Machine Learning
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Machine learning and bio applications

e origin: perceptron constituted an attempt to model actual neuronal behavior

e analysis of translation initiation sequences employed the perceptron to define criteria
for start sites in Escherichia coli

e medical service, applications like emotion detection
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Who will be the winner in the era of Deep Learning and Al?

e Amazon

e Apple, Facebook, Google, Linkedln, Twitter, Uber, etc..

e Nvidia, Samsung

Convex Optimization for Machine Learning
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Thank youl!

Sunghee Yun (sunyun@amazon.com)


http://www.kiise.or.kr/conference/kcc/2017

