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Today

• Convex optimization

• Machine learning

– four perspectives: statistics, computer science, numerical algorithms, hardware

• Deep learning

– CNN & RNN

• AI Applications

– image classification, self-driving cars, security, IoT, bio-medical
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Prerequisite for the talk

This talk will assume the audience

• has been exposed to basic linear algebra

• can distinguish componentwise inequality from that for positive semidefiniteness, i.e.,

Ax ⪯ b ⇔

 aT1
...

aTm

 x ⪯

 b1
...

bm

 ⇔ a
T
i x ≤ bi for i = 1, . . . ,m,

but,

A ⪰ 0 ⇔ A = A
T
and x

T
Ax ≥ 0 for all x ∈ Rn

A ≻ 0 ⇔ A = A
T
and x

T
Ax > 0 for all nonzero x ∈ Rn
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Why convex optimization?

• many machine learning algorithms (inherently) depend on convex optimization

• one of few optization class that can be actually solved

• a number of engineering and scientific problems can be cast into convex optimization

problems

• many more can be approximated to convex optimization

• convex optimization sheds lights on intrinsic property and structure of many

optimization, hence, machine learning algorithms

Convex Optimization for Machine Learning 4



S. Yun

Why convex optimization?

• many machine learning algorithms (inherently) depend on convex optimization

• one of few optization class that can be actually solved

• a number of engineering and scientific problems can be cast into convex optimization

problems

• many more can be approximated to convex optimization

• convex optimization sheds lights on intrinsic property and structure of many

optimization, hence, machine learning algorithms

Convex Optimization for Machine Learning 5



S. Yun

Why convex optimization?

• many machine learning algorithms (inherently) depend on convex optimization

• one of few optization class that can be actually solved

• a number of engineering and scientific problems can be cast into convex optimization

problems

• many more can be approximated to convex optimization

• convex optimization sheds lights on intrinsic property and structure of many

optimization, hence, machine learning algorithms

Convex Optimization for Machine Learning 6



S. Yun

Why convex optimization?

• many machine learning algorithms (inherently) depend on convex optimization

• one of few optization class that can be actually solved

• a number of engineering and scientific problems can be cast into convex optimization

problems

• many more can be approximated to convex optimization

• convex optimization sheds lights on intrinsic property and structure of many

optimization, hence, machine learning algorithms

Convex Optimization for Machine Learning 7



S. Yun

Why convex optimization?

• many machine learning algorithms (inherently) depend on convex optimization

• one of few optization class that can be actually solved

• a number of engineering and scientific problems can be cast into convex optimization

problems

• many more can be approximated to convex optimization

• convex optimization sheds lights on intrinsic property and structure of many

optimization, hence, machine learning algorithms

Convex Optimization for Machine Learning 8



S. Yun

Why convex optimization?

• many machine learning algorithms (inherently) depend on convex optimization

• one of few optization class that can be actually solved

• a number of engineering and scientific problems can be cast into convex optimization

problems

• many more can be approximated to convex optimization

• convex optimization sheds lights on intrinsic property and structure of many

optimization, hence, machine learning algorithms

Convex Optimization for Machine Learning 9



S. Yun

Mathematical optimization

• mathematical optimization problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

– x =
[
x1 · · · xn

]T ∈ Rn is the (vector) optimization variable

– f0 : Rn → R is the objective function

– fi : R
n → R are the inequality constraint functions

– hi : R
n → R are the equality constraint functions
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Optimization examples

• circuit optimization

– optimization variables: transistor widths, resistances, capacitances, inductances

– objective: operating speed (or equivalently, maximum delay)

– constraints: area, power consumption

• portfolio optimization

– optimization variables: amounts invested in different assets

– objective: expected return

– constraints: budget, overall risk, return variance
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Optimization examples

• machine learning

– optimization variables: model parameters (e.g., connection weights)

– objective: squared error (or loss function)

– constraints: network architecture
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Solution methods

• for general optimization problems

– extremly difficult to solve (practically impossible to solve)

– most methods try to find (good) suboptimal solutions, e.g., using heuristics

• some exceptions

– least-squares (LS)

– liner programming (LP)

– semidefinite programming (SDP)
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Least-squares (LS)

• least-squares (LS) problem:

minimize ∥Ax− b∥2
2 =

∑m
i=1(a

T
i x− bi)

2

– analytic solution: any solution satisfying (ATA)x∗ = ATb

– extremely reliable and efficient algorithms

– has been there at least since Gauss

• applications

– LS problems are easy to recognize

– has huge number of applications, e.g., line fitting
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Linear programming (LP)

• linear program (LP):
minimize cTx

subject to Ax ⪯ b

– no analytic solution

– reliable and efficient algorithms exist, e.g., simplex method, interiorpoint method

– has been there at least since Fourier

– systematical algorithm existed since World War II

• applications

– less obvious to recognize (than LS)

– lots of problems can be cast into LP, e.g., network flow problem
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Semidefinite programming (SDP)

• semidefinite program (SDP):

minimize cTx

subject to F0 + x1F1 + · · · + xnFn ⪰ 0

– no analytic solution

– but, reliable and efficient algorithms exist, e.g., interior-point method

– recent technology

• applications

– never easy to recognize

– lots of problems, e.g., optimal control theory, can be cast into SDP

– extremely non-obvious, but convex, hence global optimality easily achieved!
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Max-det problem (extension of SDP)

• max-det program:

minimize cTx+ log det(F0 + x1F1 + · · · + xnFn)

subject to G0 + x1G1 + · · · + xnGn ⪰ 0

– no analytic solution

– but, reliable and efficient algorithms exist, e.g., interior-point method

– recent technology

• applications

– never easy to recognize

– lots of stochastic optimization problems, e.g., every covariance matrix is positive

semidefinite

– again convex, hence global optimality (relatively) easily achieved!
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Common features in these Exceptions?

• they are convex optimization problems!

• convex optimization:

minimize f0(x)

subject to fi(x) ⪯Ki
0, i = 1, . . . ,m

Ax = b

where

– f0(λx+(1−λ)y) ≤ λf0(x)+ (1−λ)f0(y) for all x, y ∈ Rn and 0 ≤ λ ≤ 1

– fi : R
n → Rki are Ki-convex w.r.t. proper cone Ki ⊆ Rki

– all equality constraints are linear
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Convex optimization

• algorithms

– classical algorithms like simplex method still work well for many LPs

– many state-of-the-art algorithms develoled for (even) large-scale convex optimization

problems

∗ barrier methods

∗ primal-dual interior-point methods

• applications

– huge number of engineering and scientific problems are (or can be cast into) convex

optimization problems

– convex relaxation
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What’s fuss about convex optimization?

• which one of these problems are easier to solve?

– (generalized) geometric program with n = 3, 000 variables and m = 1, 000

constraints

minimize
∑p0

i=1 α0,ix
β0,i,1
1 · · · x

β0,i,n
n

subject to
∑pj

i=1 αj,ix
βj,i,1
1 · · · x

βj,i,n
n ≤ 1, j = 1, . . . ,m

with αj,i ≥ 0 and βj,i,k ∈ R
⇒ can be solved within 1 minute globally in your laptop computer

– minimization of 10th order polynomial of n = 20 variables with no constraint

minimize
∑10

i1=1 · · ·
∑10

in=1 ci1,...,inx
i1
1 · · · xinn

with ci1,...,in ∈ R
⇒ you cannot solve!
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What is machine learning?

• machine learning

– is the subfield of computer science that “gives computers the ability to learn without

being explicitly programmed.” (Arthur Samuel, 1959)

– learns from data and predicts on data

• applications

– spam fitering, search engine

– detection of network intruders (or malicious insiders)

– computer vision, speach recognition, natural language processing
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ML example: regression

• problem: what is a reasonable price for a

house?

– what would a rational (or rather normal)

human being do?

– ML approach:

∗ collect data: x: size, y: price

∗ train model: draw a line to represent

(typical) trend

∗ predict a price from the line

Convex Optimization for Machine Learning 24



S. Yun

ML example: multi-variate regression

• what if we have more than one x? or rather

more than two x’s?

• what if highly nonlinera and nonconvex fitting

function is needed?
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Mathematical formulation for (supervised) ML

• given training set, {(x(1), y(1)), . . . , (x(m), y(m))}, where x(i) ∈ Rp and y(i) ∈ Rq

• want to find function gθ : R
p → Rq with learning parameter, θ ∈ Rn

– gθ(x) desired to be as close as possible to y for future (x, y) ∈ Rp × Rq

– i.e., gθ(x) ∼ y

• define a loss function l : Rq × Rq → R+

• solve the optimization problem:

minimize f(θ) = 1
m

∑m
i=1 l(gθ(x

(i)), y(i))

subject to θ ∈ Θ
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Gifts I

• genetic algorithm learning how to swing

• multi-class classification using deep learning
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Linear regression

• (simple) linear regression is a ML method when

– q = 1, i.e., the output is scalar

– gθ(x) = θT
[

1

x

]
= θ0 + θ1x1 + · · · + θpxp, i.e., n = p+ 1

– l : R × R → R+ is defined by l(y1, y2) = (y1 − y2)
2

– Θ = Rp+1, i.e., parameter domain is all the real numbers

• formulation

minimize f(θ) = 1
m

∑m
i=1

(
θT

[
1

x(i)

]
− y(i)

)2
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Solution method for linear regression

• linear regression is nothing but LS since

mf(θ) =

m∑
i=1

(
θ
T

[
1

x(i)

]
− y

(i)

)2

=

∥∥∥∥∥∥∥
 1 x(1)T

... ...

1 x(m)T

 θ −

 y(1)
...

y(m)


∥∥∥∥∥∥∥
2

2

= ∥Xθ − y∥2
2

• convex in θ, hence obtains its global optimality when the gradient vanishes, i.e.,

m∇f(θ) = 2X
T
(Xθ − y) = 2((X

T
X)θ −X

T
y) = 0

• analytic solution exists and in practice,

– QR decomposition or single value decomposition (SVD) can be used
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Multiple output linear regression

• multiple output linear regression is a ML method when

– gθ(x) = θT
[

1

x

]
=

 θ1,0 + θ1,1x1 + · · · + θ1,pxp
...

θq,0 + θq,1x1 + · · · + θq,pxp


– l : Rq × Rq → R+ is defined by l(y1, y2) = ∥y1 − y2∥2

2

– Θ = R(p+1)×q, i.e., parameter domain is all the real numbers

• formulation

minimize f(θ) = 1
m

∑m
i=1

∥∥∥∥θT [
1

x(i)

]
− y(i)

∥∥∥∥2

2
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Solution method for multiple output linear regression

• linear regression is nothing but LS since

mf(θ) =

m∑
i=1

∥∥∥∥θT [
1

x(i)

]
− y

(i)

∥∥∥∥2

2

=

∥∥∥∥∥∥∥
 1 x(1)T · · · 1 x(1)T

... ... . . . ... ...

1 x(m)T · · · 1 x(m)T

 θ̃ −

 y(1)
...

y(m)


∥∥∥∥∥∥∥
2

2

= ∥X̃θ̃ − y∥2
2

where X̃ ∈ Rm×q(p+1) and θ̃ ∈ Rq(p+1)

• hence, the same method applies
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Linear regression with constraints

• what if we have one constraint?

minimize f(θ) = 1
m

∑m
i=1

(
θT

[
1

x(i)

]
− y(i)

)2

subject to θ1 ≥ 0

• no analytic solution exists (with only one constraint) in general

• however, convex optimization algorithms solve it (almost) as easily as original problem

• but, now with any number of convex constraints

minimize f(θ) = 1
m

∑m
i=1

(
θT

[
1

x(i)

]
− y(i)

)2

subject to gi(θ) ≤ 0 for i = 1, . . . , l

Aθ = b
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Support vector machine

• problem definition:

– given x(i) ∈ Rp: input data, and y(i) ∈ {−1, 1}: output labels
– find hyperplane which separates two different classes as distinctively as possible (in

some measure)

• (typical) formulation:

minimize ∥a∥2
2 + γ

∑m
i=1 ui

subject to y(i)(aTx(i) + b) ≥ 1 − ui, i = 1, . . . ,m

u ⪰ 0

– convex optimization problem, hence stable and efficient algorithms exist even for

very large problems

– has worked extremely well in practice (until... deep learning boom)
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Support vector machine with kernels

• use feature transformation ϕ : Rp → Rq (with q > p)

• formulation:

minimize ∥ã∥2
2 + γ

∑m
i=1 ũi

subject to y(i)(ãTϕ(x(i)) + b̃) ≥ 1 − ũi, i = 1, . . . ,m

ũ ⪰ 0

• still convex optimization problem
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Different perspectives on machine learning

• statistical view: Frequentist or Bayesian?

• computer scientific perspective

• numerical algorithmic perspective

• performance acceleration using hardward parallelism with GPGPUs
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Statistical perspective

• suppose data set Xm = {x(1), . . . , x(m)}

– drawn independently from (true, but unknown) data generating distribution pdata(x)

• Maximum Likelihood Estimation (MLE) is to solve

maximize pdata(X; θ) =
∏m

i=1 pdata(x
(i); θ)

• equivalent, but numerically friendly formulation:

maximize log pdata(X; θ) =
∑m

i=1 log pdata(x
(i); θ)
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Equivalence of MLE to KL divergence

• in information theory, Kullback-Leibler (KL) divergence defines distance between two

probability distributions, p and q:

DKL(p∥q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx

• KL divergence between data distribution, pdata, and model distribution, pmodel, can be

approximated by Monte Carlo method as

DKL(pdata∥pmodel) ≃
1

m

m∑
i=1

(log pdata(x
(i)
) − log pmodel(x

(i)
; θ))

• hence, minimizing the KL divergence is equivalent to maximizing the log-likelihood!
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Equivalence of MLE to MSE

• assume the model is Gaussian, i.e., y ∼ N (gθ(x),Σ):

p(y
(i)|x(i)

; θ) =
1

√
2π

p|Σ|1/2
exp

(
−
1

2

(
y
(i) − gθ(x

(i)
)
)T

Σ
−1

(
y
(i) − gθ(x

(i)
)
))

• assuming that Σ = Ip, the log-likelihood becomes

m∑
i=1

log p(y
(i)|x(i)

; θ) = −
m∑
i=1

∥y(i) − gθ(x
(i)
)∥2

2/2 −
pm

2
log(2π)

• hence, maximizing log-likelihood is equivalent to minimizing mean-square-error (MSE)!
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Other statistical factors

• overfitting problems

• training and test

• cross-validation

• regularization

• drop-out
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Computer scientific perspectives

• neural network architectures

• hyper parameter optimization

• double/single precision representation

• low-power machine learning (especially for inference)
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Numerical algorithmic perspectives

• basic formulation:

minimize f(θ) = 1
m

∑m
i=1 l(gθ(x

(i)), y(i))

• formulation with regularization:

minimize f(θ) = 1
m

∑m
i=1 l(gθ(x

(i)), y(i)) + γr(θ)

• stochastic gradient descent (SGD):

θ
(k+1)

= θ
(k) − αk∇f(θ)
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Backpropagation for training neural network?

• assuming that

– the dimension of the feature space (or input space) is p

– the dimension of the output space is q

– a loss function l : Rq × Rq → R+

– a neural network has d layers or it is of depth d

– z{i} ∈ Rni is the input to the perceptrons in the ith layer

– y{i} ∈ Rni is the output of the perceptrons in the ith layer

– W {i} ∈ Rni×ni−1 is the weights of the connections between i− 1th layer and ith

layer

– w{i} ∈ Rni×ni−1 is the bias weights for the ith layer

– ϕ{i} : Rni → Rni represents the activation functions of the ith layer.
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Basic unit comprising a general neural network
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Activation function
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Backpropagation for training neural network?

• modeling function for the (deep) neural network gθ : R
p → Rq defined by

gθ = ϕ
{d} ◦ ψ{d} ◦ · · · ◦ ϕ{1} ◦ ψ{1}

or equivalently

gθ(x) = ϕ
{d}

(ψ
{d}

(· · · (ϕ{1}
(ψ

{1}
(x)))))

for all x ∈ Rp

• affine transmation ψ{i} : Rni−1 → Rni defined by

ψ
{i}

(y
{i−1}

) = W
{i}
y
{i−1}

+ w
{i}
.
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Recall the chain rule from college calculus class

• if we have two functions f : Rn → Rm and g : Rm → Rp, and the Jacobian matrices

of f and g are Df : Rn → Rm×n and Dg : Rm → Rp×m respectively, then the

Jacobian matrix of Dh : Rn → Rp×n of the composite function h = g ◦ f is

Dh(x) = Dg(f(x))Df(x) ∈ Rp×n

• hence, if p = 1, we have

∇h(x) = Df(x)
T∇g(f(x)) ∈ Rn
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Following math logics gives back propagation formula!

• assume that the cost function of the deep neural network is

f(θ) =
1

m

m∑
i=1

l(gθ(x
(i)
), y

(i)
).

• hence, the gradient is

m∇f(θ) =

m∑
i=1

∇θl(gθ(x
(i)
), y

(i)
) =

m∑
i=1

∇θl(gθ(x
(i)
), y

(i)
)

=
m∑
i=1

Dθgθ(x
(i)
)
T∇y1

l(gθ(x
(i)
), y

(i)
)
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=

m∑
i=1

(
D
ϕ{d}(z

{d}
)D

ψ{d}(y
{d−1}

) · · ·D
ϕ{1}(z

{1}
)D

ψ{1}(x
(i)
)
)T

∇y1
l(gθ(x

(i)
), y

(i)
)

=

m∑
i=1

D
ψ{1}(x

(i)
)
T
D
ϕ{1}(z

{1}
)
T · · ·D

ψ{d}(y
{d−1}

)
T
D
ϕ{d}(z

{d}
)
T∇y1

l(gθ(x
(i)
), y

(i)
)
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Acceleration using hardware parallelism

• general-purpose computing on GPU (GPGPU)

– maximizes parallelism for scientific computing

– can fully utilize GPU-CPU framwork

– is efficient for matrix multiplication, LU factorization, etc.

• history

– becomes popular after 2001

– two major APIs: OpenGL and DirectX

– CUDA allowing users to ignore underlying graphical concepts

– newer: Microsoft’s DirectComputer, Apple/Khronos Group’s OpenCL
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Gifts II

• Google DeepMind’s deep Q-learning to play a computer game

• Nvidia’s self-driving technology demo @ CES 2017
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What is deep learning (DL)?

• DL can be defined by

– deep artificial neural network

• DL can be characterized by

– many layers of processing for feature extraction and transformation

– learning of multiple levels of features or representations of the data

– learning representations of data

– multiple levels corresponding to different levels of abstraction

• two interpretations

– universal approximation theorem interpretation

– probabilistic interpretation
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Recent advances in deep learning

• upheaval in pattern recognition due to deep learning (H. Choi)
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Convolutional neural network (CNN)

• CNN (or ConvNet) is

– a type of feed-forward artificial neural network

– inspired by animal visual cortex

• individual cortical neurons respond to restricted region of space

• applications in image and video recognition, recommender systems, and natural language

processing
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Recurrent neural network (RNN)

• RNN

– is a class of artificial neural network where connections between units form a directed

cycle

– creates an internal state of the network which allows it to exhibit dynamic temporal

behavior

• applicable to handwriting recognition or speech recognition

– neural history compressor, long short-term memory
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Special consideration: how to learn a deep neural net from rules

• create generative model: use rules to generate {(x(1), y(1)), . . . , (x(m), y(m))}

– want to find function gθ : Rp → Rq with learning parameter, θ ∈ Rn, but this

time, we want to use it for another purpose

– define a loss function l : Rq × Rq → R+ for the purpose

• now do the usual, i.e., learn a deep neural net using the set as training set

• how is this different from the rule-based approach?

– what are the advantages?
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AI Applications

• big data: medical, bio, finance

• auto industry: self-driving (or assisted driving) algorithm

• IoT: smart machines, smart algorithms

• securities
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Image classification

• today’s largest network

– 10 layers, 1B parameters, 10M images

– 30 exa flops

• human brain has trillions of parameters - only 1, 000 times more
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Machine learning and security

• Is ML pipe dream of cybersecurity?

– “there’s no silver bullet in security.”

• Is ML answer to detecting advanced breaches?

– it will shine as IT envinronments “grow increasingly complex.”

• Will AI replace cybersecurity experts?
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Machine learning and IoT

• IoT market will grow to > $1.7 trillion by 2020 with CAGR of 16.9%

– purpose-built platforms, storage, networking, security

– application software and service offerings

• # IoT connected devices (cars, refrigerators, . . . ) will climb to 30 billion

• e.g., General Electric, Philips, Ford Motor, Rio Tinto Group, and Stanley Black &

Decker being a few of the companies with huge support from

– companies like Dell, Hewlett Packard Enterprise, IBM, AT&T, Verizon

Communications, Intel, ARM

– small/startup companies than can be counted

(source: Forbes article)
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Machine learning and medical applications

• demand: people increasingly interested in longer and healthier life

• technology

– data from huge number of patients needed

– size of DNA sequence huge!
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Machine learning and bio applications

• origin: perceptron constituted an attempt to model actual neuronal behavior

• analysis of translation initiation sequences employed the perceptron to define criteria

for start sites in Escherichia coli

• medical service, applications like emotion detection
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Who will be the winner in the era of Deep Learning and AI?

• Amazon

• Apple, Facebook, Google, LinkedIn, Twitter, Uber, etc..

• Nvidia, Samsung
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Sunghee Yun (sunyun@amazon.com)
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